КЛЕТКА

 

 ПРОКАРИОТИЧЕСКИЕ И ЭУКАРИОТИЧЕСКИЕ КЛЕТКИ

 

 

В настоящее время различают прокариотические и эукариотические организмы. К первым принадлежат сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии и хламидии, ко вторым - большинство водорослей, грибы и лишайники, растения и животные. В отличие от прокариотической, эука- риотическая клетка имеет ядро, ограниченное оболочкой из двух мембран, и большое количество мембранных органелл

 

Химическая организация клетки. Из всех элементов периодической системы Д.И. Менделеева в организме человека обнаружено 86 постоянно присутствующих, из них 25 необходимы для нормальной жизнедеятельности, 18 из которых абсолютно, а 7 полезны. Профессор В.Р. Вильямс назвал их элементами жизни.

 

В состав веществ, участвующих в реакциях, связанных с жизнедеятельностью клетки, входят почти все известные химические элементы, причем на долю четырех из них приходится около 98% массы клетки. Это кислород (65 - 75%), углерод (15 - 18%), водород (8 - 10%) и азот (1,5 - 3,0%). Остальные элементы подразделяются на две группы: макроэлементыl (около 1,9%) и микроэлементыl (около 0,1%). К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций и железо, к микроэлементам - цинк, медь, йод, фтор, марганец, селен, кобальт, молибден, стронций, никель, хром, ванадий и др. Несмотря на очень малое содержание, микроэлементы играют важную роль. Они влияют на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки в отдельности и организма как целого.

 

Клетка состоит из неорганических и органических веществ. Среди неорганических преобладает вода, ее относительное количество составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходят все биохимические реакции в клетке, при участии воды осуществляется ее теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными.

 

Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Есть органические вещества с вытянутыми молекулами, у которых один конец гидрофилен, а другой гидрофобен; их называют амфипатическими. Примером амфипатических веществ могут служить фос- фолипиды, участвующие в образовании биологических мембран.

 

Неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5% массы клетки. Среди органических веществ преобладают белки (10 - 20%), жиры, или липиды (1 - 5%), углеводы (0,2 - 2,0%), нуклеиновые кислоты (1 - 2%). Содержание низкомолекулярных веществ в клетке не превышает 0,5%.

 

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц (мономеров). Мономеры белка - аминокислоты (их 20) одновременно обладают двумя активными атомными группами: аминогруппой (она сообщает молекуле аминокислоты свойства основания) и карбоксильной группой (она сообщает молекуле свойства кислоты) ( 1). Аминокислоты соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка) ( 2). Она закручивается в спираль, представляющую, в свою очередь, вторичную структуру белка.

 

Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

 

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч - миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Они образуют клеточный скелет. Движения клеток также осуществляют специальные белки (актин, миозин, динеин). Белки обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Антитела, которые наряду с регу- ляторными выполняют и защитные функции, также являются белками. И наконец, белки являются одним из источников энергии.

 

Углеводы подразделяются на моносахариды и полисахариды. Полисахариды, подобно белкам, построены из мономеров - моносахаридов. Среди моносахаридов в клетке наиболее важны глюкоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде, полисахариды - плохо. В животных клетках полисахариды представлены гликогеном, в растительных - в основном растворимым крахмалом и нерастворимыми целлюлозой, гемицеллюлозой, пектином и др. Углеводы являются источником энергии. Сложные углеводы, соединенные с белками (гликопротеины) и (или) жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

 

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот ( 3). К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Они являются важнейшим источником энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж.

 

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами - нуклеотидами, каждый из которых состоит из пуринового или пиримидинового основания, сахара пентозы и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

 

Молекула РНК образована одной полинуклеотидной цепью

Молекула ДНК состоит из двух разнонаправленных полинукле- отидных цепей, закрученных одна вокруг другой в виде двойной спирали. Каждый нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. При этом основания расположены внутри двойной спирали, а сахаро-фосфатный скелет - снаружи. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями, при этом аденин соединяется только с тимином, а цитозин с гуанином. В зависимости от номера атома по отношению к связи с основанием концы цепи обозначают как 5' и 3' (см.  4 и 5).

 

Все биохимические реакции в клетке строго структурированы и осуществляются при участии высокоспецифических биокатализаторов - ферментов, или энзимов (греч. en - в, zyme - брожение, закваска), - белков, которые, соединяясь с биологическими молекулами - субстратами, снижают энергию активации, необходимую для осуществления той или иной реакции (энергия активации - это минимальное количество энергии, необходимое молекуле для вступления в химическую реакцию). Ферменты ускоряют реакцию на 10 порядков (в 1010 раз).

 

Названия всех ферментов складываются из двух частей. Первая содержит указание либо на субстрат, либо на действие, либо на то и другое. Вторая часть - окончание, оно всегда представлено буквами «аза». Так, название фермента «сукцинатдегидрогеназа» означает, что он воздействует на соединения янтарной кислоты («сукцинат-»), отнимая от них водород («-дегидроген-»).

 

По общему типу воздействия ферменты подразделяются на щесть классов. Оксиредуктазы катализируют окислительно-восстановительные реакции, трансферазы1 участвуют в переносе функциональных групп, гидролазы обеспечивают реакции гидролиза, лиазы - присоединение групп по двойным связям, изо- меразы осуществляют перевод соединений в другую изомерную форму, а лигазы (не путать с лиазами!) связывают молекулярные группировки в цепи.

 

Основа любого фермента - белок. Вместе с тем есть ферменты, которые не обладают каталитической активностью, пока к белковой основе (апоферменту) не присоединится более простая по строению небелковая группировка - кофермент. Иногда коферменты имеют собственные названия, иногда их обозначают буквами. Нередко в состав коферментов входят вещества, называемые витаминами. Многие витамины не синтезируются в организме и должны поэтому поступать с пищей. При их недостатке возникают заболевания (авитаминозы), симптомы которых, по сути дела, это проявления недостаточной активности соответствующих ферментов.

 

Некоторые коферменты играют ключевую роль во многих важнейших биохимических реакциях. В качестве примера можно привести кофермент А (КоА), который обеспечивает перенос группировок уксусной кислоты. Кофермент никотинамидаденинди- нуклеотид (сокращенно - NAD) обеспечивает перенос ионов водорода в окислительно-восстановительных реакциях; таковы же и никотинамидадениндинуклеотидфосфат (NADP), флавинаденин- динуклеотид (FAD) и ряд других. Кстати, никотинамид - один из витаминов.

 

 

 

 Смотрите также:

  

Начальные этапы эволюции жизни. Переход в эволюции живой...

Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан и следовало выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью...

 

Строение и разновидности клеток. Клетка представляет...

Клетки эукариот, в отличие от клеток прокариот, содержат митохондрии – специализированные органеллы, в которых идут процессы окисления.

 

ГЕН — элементарная и структурная единица наследственности.

У прокариотов аналогом хромосомы является единственная в клетке молекула ДНК (к тому же не несущая на себе ядерных белков), в
Это представление было доказано в последующих исследованиях, а природа эффекта плейотропии выяснена методами биохимической генетики.

 

КЛЕТКА — элементарная структурная и функциональная единица...

Поперечнополосатые сердечные мышечные клетки, в отличие от скелетных мышечных К., имеют не миофибрил-лярную организацию толстых и тонких нитей, а единую систему, заполняющую почти всю клетку.

 

Плазмодесмы. движения цитоплазмы

Подобно всем прочим эукариотическим клеткам, клетки высших растений содержат окруженное оболочкой ядро
В чем можно видеть адаптивную ценность эукариотической организации?
2.8. Каким образом ферменты ускоряют химические реакции?