Грунтоведение

 

 Рентгеновский метод грунтов

 

 

 

Русская пословица гласит: «Лучше один раз увидеть, чем сто раз услышать». Перефразируя эту известную пословицу, можно сказать: «Лучше один раз увидеть, чем сто раз предположить о существовании тонких коллоидных частиц». Ученые всегда стремились увидеть малые объекты: частицы глинистых минералов, микробы, вирусы и т. д. Мы уже познакомились с развитием микроскопических методов исследования, но они оказались совершенно непригодными для изучения «невидимок».

 

Впервые удалось увидеть коллоидные частицы размером менее 1—0,1 мкм в ультрамикроскопе. Он основан на так называемом эффекте Тиндаля. Если в комнату проникает через щель в занавеске или ставне тонкий луч солнца, то на его пути видны тысячи тонких пылеватых частиц. Этот эффект и лежит в основе действия ультрамикроскопа. В нем коллоидные частицы видимы в направлении, перпендикулярном к направлению луча света. Конечно, видимость таких частиц в подобном микроскопе совершенно недостаточна для их изучения. Лишь с появлением электронного микроскопа по-на- стОящему увидели тонкие частицы глинистых минералов. Первым для этой цели был использован электронный микроскоп просвечивающего типа. В нем вместо световых лучей используется пучок быстролетящих в вакууме электронов. Их полет ускоряется электрическим напряжением в десятки и даже сотни тысяч вольт.

 

 В таком микроскопе вместо стеклянных используются электронные линзы .

Длина' возникающих волн для электронов в сотни тысяч раз короче световых волн. В просвечивающем электронном микроскопе можно увидеть частицы размером в несколько сот раз меньше, чем в лучшем оптическом микроскопе. Он дает возможность получать увеличения До 100 ООО крат и даже больше. Оказалось, что эти тонкие минералы очень разнообразны по форме. Одни образуют шестиугольные пластинки, другие — иголки, трубочки, зерна с расплывчатыми краями, нитки и т. д. .

Несколько больше информации дал метод реплик. Реплика представляет собой отпечаток, получаемый с поверхности кусочка глины путем напыления на нее в вакууме графита либо какого-нибудь другого вещества. Затем глина удаляется, и на электронном микроскопе исследуется отпечаток-реплика.

 

Наконец, делались попытки изучения тончайших срезов с глинистых грунтов.

Применение этих методов позволило узнать много нового о тонкой структуре глин.

Следующий шаг был сделан в 50-х годах XX в., когда были созданы принципиально новые растровые электронные микроскопы. Они широко открыли окно в загадочный мир тончайших структур грунтов.

 

В таких микроскопах узкий электронный луч (зонд) обегает поверхность исследуемого образца. В каждой точке соприкосновения электронного луча (зонда) с грунтом возникает несколько видов отраженного излучения. Здесь и вторичные, и рассеянные электроны, и рентгеновские лучи, и, наконец, световые волны. Они и дают яркое изображение объекта на экране электронно-лучевых трубок. Благодаря комплексности изучения с помощью такого прибора получают информацию о самых разнообразных свойствах поверхности грунта.

 

Для изучения структуры глинистых грунтов в растровом электронном микроскопе их поверхность покрывается тончайшим слоем металла (чаще всего золотом) с тем, чтобы она могла отражать электронный луч.

 

С помощью растрового электронного микроскопа можно рассмотреть детали строения поверхности размером до 1—0,5 мкм. Это позволило изучить многие особенности микроструктуры глинистых грунтов, которые до этого были неизвестны. Использование физических методов исследования дало новые возможности для развития науки о грунтах. Так, сейчас начали применять ультразвуковой и рентгеновский микроскопы. Пока они оказались пригодными для решения лишь отдельных вопросов. Однако в их использовании сделаны только первые робкие шаги.

 

Важную информацию о составе минералов, слагающих глинистые грунты, дают рентгеноструктурные методы. Они позволяют получить дифракционную картину, возникающую при прохождении рентгеновских лучей через столбик спрессованного глинистого вещества, помещенный в специальную рентгеновскую камеру.

 

Рентгеновский метод дает также возможность выяснить, как располагаются в глинах частицы минералов. Для этой цели используются как обычные рентгеновские камеры, так и специальные дифрактомеры — рентгеновские установки, в которых регистрация изменений ведется с помощью специальных счетчиков.

 

Применяя все эти методы, грунтоведы обнаружили, что глинистые грунты обладают самыми разнообразными тонкими структурами. Среди них есть структура «карточный домик» , в которой частицы образуют на первый взгляд совершенно неустойчивую «воздушную» постройку. Но это оказывается не совсем так. Электромолекулярные силы особенно проявляются на концах частиц, поэтому-то такие микроструктуры достаточно прочны.

 

Советский ученый В. И. Осипов с помощью растрового электронного микроскопа подробно исследовал строение глин и обнаружил целую серию структур. Он показал, что наиболее рыхлыми являются глинистые осадки, содержащие гидрослюду и монтмориллонит. Они образуют причудливые скопления лепестков разных форм .Их «узор» зависит от среды, в которой возникает осадок, химического состава минералов и ряда других факторов.

 

В природных глинистых грунтах В. И. Осипов обнаружил семь основных типов микроструктур. Он убедительно показал, что многие свойства глин тесно связаны с особенностями их микростроения. Так наука все глубже и глубже проникает в тайны тончайшего строения грунтов.

 

Как гласит легенда, шахматы были изобретены индусским ученым по имени Сета Царь Индии Шерам пришел в восторг от новой остроумной игры. Решив вознаградить создателя шахмат, он пригласил его к себе во дворец.

— Я решил наградить тебя за твою выдумку. Проси, что хочешь!

 

Как далее повествуется в легенде, остроумный ученый попросил, чтобы ему выдали немного пшеничных зерен. При этом количество этих зерен должно было быть определено из такой прогрессии: на первую клетку шахматной доски нужно было положить всего-навсего одно зерно, на вторую — только два, на третью — четыре и так удваивать до последней клетки доски.

Царь удивился и решил, что ученый очень скромен и просит крайне мало. Он сказал: «Ты получишь то, что просишь. Жди у ворот дворца, тебе вынесут мешок пшеницы».

 

Как известно, мудрецы царя в течение ночи подсчитали, что ученому необходимо выдать ни много, ни мало 18 446 744 073 709 551 615 зерен. Это количество пшеницы заняло бы объем в 12 000 км3, что во много раз больше объема пшеницы, собираемой на всей Земле.

Теперь представим, что изобретатель решил просить себе в награду землю и для этой цели вместо пшеничных зерен потребовал бы частицы грунта. Давайте примерно подсчитаем, какой они займут объем, если их размер будет меняться?

Для начала возьмем песчаные частицы размером 1 мм. Если насыпать их в сосуд объемом 1 м3, то в нем окажется примерно 109 песчинок. Теперь давайте класть частицы на клетки шахматной доски. Всего придется туда уложить 1,8-1019 песчинок (для простоты округляем эту цифру). Учитывая число песчинок в одном кубометре, легко рассчитаем, что они займут объем 1,8-1010 м3, или 18 км3.

 

А теперь давайте проделаем эту же операцию с пылеватыми.частицами размером 0,01мм. Таких пылинок в сосуде емкостью 1 м3 окажется 1015. Число пылеватых частиц, которые нужно будет уложить на шахматную доску, будет то же, что и для песчинок. Но вот объем их будет только 18 000 м3, или стотысячные доли кубического километра.

Ну, а теперь начнем укладывать на клетки шахматной доски частички глины размером 0,001 мм. В 1 м3 будет находиться 1018 зерен. Если взять все глинистые чистички, уложенные по системе индусского ученого Сета, и собрать их в кучу, то ее размер составит лишь 18 м3. Это будет параллелепипед со сторонами 3X3X2 м.

 

Так много частичек и в столь малом объеме! Разве это не поразительно? Однако существуют не менее интересные явления, обусловленные астрономическим числом тонких частиц, содержащихся в малых объемах.

Возьмем кубик, у которого длина каждого ребра составляет 1 см. Можно легко подсчитать, что площадь поверхности его сторон равна всего 6 см2. Теперь давайте разделим кубик на восемь равных частей. Площадь его сторон возрастет до 12 см2. Будем продолжать деление дальше. Когда величина сторон распиливаемых кубиков достигнет 1 мм, то площадь их поверхности станет равной 60 см2. Если разделить наш кубик на микрокубики со сторонами 0,001 мм, то суммарная площадь их поверхности составит 6-Ю6 см2, или 600 м2. А ведь объем их остался тем же (считаем, что при распиливании потери вещества не происходит)—1 см3!

 

Если дробление продолжить и дальше, до коллоидных размеров, то при сторонах мельчайших кубиков, равных 0,0001 мм, площадь их поверхности будет уже определяться впечатляющей цифрой в 60 млн. см2, или 6000 м2.

Но в грунтах могут быть и еще более тонкие глинистые частицы и тогда в 1 см3 грунта общая площадь поверхности будет еще грандиознее.

 

Ученые назвали площадь этой поверхности частиц в 1 см3 (иногда в 1 г вещества) удельной поверхностью грунта.

Когда мы подсчитывала площадь поверхности, то исходили из упрощенного представления о том, что частицы имеют кубическую форму и тесно прилегают друг к другу. В природе все гораздо сложнее. Прежде всего удельная поверхность зависит от минерального состава. Возьмем, к примеру, глинистый грунт, состоящий из монтмориллонита. Подсчеты показали, что в этом случае удельная поверхность, рассчитанная на 1 г вещества, достигает 800 м2. Если взять глину, состоящую из гидрослюды, то величина удельной поверхности составит только 80 м2.

 

Возникает вопрос: «Какое значение имеет удельная поверхность?» Оказывается, многие свойства грунтов зависят от удельной поверхности. В следующих разделах мы еще вспомним об этой характеристике грунтов.

Остается только сказать, как на практике определить удельную поверхность грунта. Для этого физикохимия предлагает целый комплекс методов. В основном используется зависимость между удельной поверхностью грунта и его способностью к поглощению разных веществ из растворов или к поглощению газов. Чем больше удельная поверхность, тем больше способность грунта к поглощению.

 

В римской мифологии существовал бог времени Янус. Он изображался с двумя лицами, обращенными в противоположные стороны: молодым — вперед, а старым — назад. Отсюда дошло до нас выражение «двуликий Янус». Всем известна эта летучая фраза. А в природе можно найти множество примеров подобного рода.

Ну, чем не двулик гриб мухомор? Он радует глаз своей яркой окраской, красивой формой. Но его второе лицо — необычайная ядовитость.

 

В грунтах, бывает так, что один и тот же песок может быть и рыхлым, опасным для строительства, и он же может оказаться надежным основанием для многоэтажных домов. И впрямь — «двуликий Янус».

Вот перед нами два суглинистых грунта. В одном содержатся кварц и гидрослюда, в другом — тот же состав. В лаборатории определили, из каких частиц по крупности состоят эти грунты. Опять оказалось, что они весьма схожи и по величине составляющих их частиц. Значит, по составу они одинаковы, но тогда почему их свойства различны?

Давайте попробуем определить, как образовались эти два грунта. Геологи легко установят — первый из них сформировался во время оледенения. Этот суглинок был отложен потоками талых вод, возникших при таянии ледников. Второй же возник в результате деятельности ветра. Его порывы подхватывали частицы, переносили их на большие расстояния, и, когда ветер стихал, они падали на поверхность земли. Так, год за годом накопилась толща этого суглинка. Процессы выветривания и особенно деятельность организмов и растений внесли затем свои коррективы. И вот результат — похожие по составу грунты, а строение их оказалось разным, отсюда вытекает и различие в свойствах.

 

Посмотрим внимательно: первый суглинок плотный с тонкой пористостью, в то время как второй содержит много крупных пор, а его частицы собраны в группы-агрёгаты. Кроме того он буквально пронизан корне- и червеходами.

Вот и выходит — помимо состава грунта его свойства зависят и от структуры.

Теперь необходимо выяснить, что же такое структура грунта? Если говорить обобщенно — это все то, что определяет строение грунтов на небольших однородных участках.

Мы уже знаем, что в грунтоведении изучается грунт как система, состоящая из твердых минеральных частиц, жидкости (водных растворов) и газообразной составляющей.

 

Получается, что изучение структуры — это прежде всего исследование размеров и формы частиц, агрегатов, пор и их взаимосвязи. К этому нужно добавить, что в грунтах встречаются различные структурные формы влаги и газов, которые также нужно изучать. Кроме того, очень важно выявить взаимоотношения между всеми этими структурными элементами.

 

 

 Смотрите также:

 

Закрепление грунтов - силикатизация, смолизация, термическое...

Метод закрепления грунтов смолами получил название смолизации. Сущность его заключается во введении в грунт высокомолекулярных органических соединений типа...

 

Радиоизотопные методы определения свойств грунтов

Глава 1. КРАТКИЕ СВЕДЕНИЯ О СВОЙСТВАХ ГРУНТОВ И МЕТОДАХ ИХ ОПРЕДЕЛЕНИЯ. Радиоизотопные методы определения свойств грунтов.

 

Лучевые методы диагностики

• Назовите основные общие рентгенологические методы диагностики.
• Опишите принципиальную схему изучения рентгеновского снимка.