История Земли

 

Различие между термодинамикой и физикой. Больцман

 

 

Здесь необходимо подчеркнуть одно фундаментальное различие между термодинамикой (связанной «кровным родством» с химией) с одной стороны, и всей прочей физикой (выросшей, так или иначе, из классической механики) с другой

 

В классической динамике все процессы являются обратимыми (это формулировали в явном виде все ее основатели, например, Галилей и Гюйгенс), а картина мира - детерминистической: если некое существо {«демон Лапласа») будет знать все параметры состояния Вселенной в некий момент времени, то оно сможет и точно предсказать ее будущее, и до мельчайших деталей реконструировать прошлое. Из обратимости же физических процессов следует, что время не является объективной реальностью, а вводится нами лишь для собственного удобства, как нумерация порядка событий: планеты могут обращаться вокруг Солнца как вперед, так и назад по времени, ничего не изменяя в самих основах ньютоновской системы.

 

Революция, произведенная в физике Эйнштейном, этой сферы не затронула, а его окончательное суждение на сей предмет гласит: «Время (как и необратимость) — не более чем иллюзия». Случайности также не нашлось места в той картине Мира, что создана Эйнштейном; широко известна его чеканная формулировка: «Бог не играет в кости (God casts the die, not the dice)». Даже квантовая механика, наиболее отличная по своей «идеологии» от всех прочих физических дисциплин, сохраняет этот взгляд на проблему времени: в уравнении Шредингера, лежащем в ее основе, время остается однозначно обратимым.

 

Принципиально иную картину Мира рисовала термодинамика: здесь аналогом Вселенной являлся не часовой механизм с бесконечным заводом, а паровой двигатель, в топке которого безвозвратно сгорает топливо. Согласно ВНТ, эта мировая машина постепенно сбавляет обороты, неотвратимо приближаясь к тепловой смерти, а потому ни один момент времени не тождественен предыдущему. События в целом невоспроизводимые а это означает, что время обладает направленностью, или, согласно выражению А. Эд- дингтона, существует стрела времени. Осознание принципиального различия между двумя типами процессов - обратимыми, не зависящими от направления времени, и необратимыми, зависящими от него,— составляет саму основу термодинамики. Понятие энтропии для того и было введено, чтобы отличать первые от вторых: энтропия возрастает только в результате необратимых процессов. При этом, как заключает И. Пригожин, «стрела времени» проявляет себя лишь в сочетании со случайностью: только если система ведет себя достаточно случайным образом, в ее описании возникает реальное различие между прошлым и будущим и, следовательно, необратимость. Картина Мира становится стохастической — т. е. точно предсказать изменения Мира во времени принципиально невозможно, а потому «демона Лапласа» следует отправить в отставку за полной его бесполезностью.

 

В XIX в. изучали лишь наиболее простые, замкнутые системы, не обменивающиеся с внешней средой ни веществом, ни энергией; при этом в центре внимания находилась конечная стадия термодинамических процессов, когда система пребывает в состоянии, близком к равновесию. Тогдашняя термодинамика была равновесной термодинамикой.

 

Именно равновесные состояния (в разреженном газе) изучал Больцман, с чем и была связана постигшая его творческая неудача: горячо восприняв идею эволюции (хорошо известна его оценка: «Девятнадцатый век — это век Дарвина»), он потратил массу сил и времени на то, чтобы дать дарвинизму строгое физическое обоснование, но так и не сумел этого сделать . Более того, введенный им принцип порядка налагает прямой запрет на возникновение организованных (и потому менее вероятных) структур из неорганизованных - т. е. на прогрессивную эволюцию. На неравновесные же процессы в то время смотрели как на исключения, второстепенные детали, не заслуживающие специального изучения.

 

Ныне ситуация коренным образом изменилась и именно замкнутые системы рассматриваются как сравнительно редкие исключения из правила. При этом было установлено, что в тех открытых системах, что находятся в сильно неравновесных условиях, могут спонтанно возникать такие типы структур, которые способны к самоорганизации, т. е. к переходу от беспорядка, «теплового хаоса», к упорядоченным состояниям. Создатель новой, неравновесной термодинамики И. Пригожин назвал эти структуры диссипативными, стремясь подчеркнуть парадокс: процесс диссипации (т. е. безвозвратных потерь энергии) играет в их возникновении конструктивную роль. Особое значение в этих процессах имеют флуктуации — случайные отклонения некоей величины, характеризующей систему из большого числа единиц, от ее среднего значения (одна из книг Пригожина так и называется — «Самоорганизация в неравновесных системах. От диссипатив- ных структур к упорядочению через флуктуации»).

 

 

 Смотрите также:

 

Физик Л. БОЛЬЦМАН, кинетическая теория

Австрийский физик, один из основоположников классической статистической физики и физической
Больцман дал статистическую трактовку второго закона термодинамики.
Столкновения между частицами газа очень важны для релаксационных процессов.

 

работы Дж. Гиббса, Больцмана, М. Планка, А. Эйнштейна...

На меня особенно сильное впечатление произвел ленинский анализ кризиса физики и его
от природы самих смешанных газов (лишь бы они химически не взаимодействовали между собой) и от степени их различия.
От возникновения термодинамики... Развивая идеи Больцмана, М...

 

Концепция современного естествознания. От возникновения...

8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем.
Эту теорему Больцман истолковал как доказательство статистического характера второго начала термодинамики.

 

Термодинамическое и статистическое описание свойств...

Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул. После создания молекулярной физики термодинамика не утратила своего значения.