История Земли

 

Неустойчивость Бенара

 

 

Одним из простейших случаев этой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя жидкости к верхнему обеспечивается одной лишь теплопроводностью, без конвекции.

 

Однако когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В нашей жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинает двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики.

 

Если в классической термодинамике тепловой поток считается источником потерь (диссипации), то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром.

 

Еще более удивительны явления самоорганизации, происходящие в неравновесных химических системах (например, в так называемых химических часах). Если в ячейках Бенара речь шла о согласованных механических движениях молекул, то здесь мы имеем дело со столь же согласованными, «как по команде», их химическими превращениями.

 

Предположим, что у нас имеется сосуд с молекулами двух сортов - «синими» и «красными». Движение молекул хаотично, поэтому в любой из частей сосуда концентрация «синих» и «красных» молекул будет несколько отклоняться от средней то в одну, то в другую сторону, а общий цвет реакционной смеси должен быть фиолетовым с бесконечными переходами в сторону синего и красного. А вот в химических часах мы увидим нечто совершенно иное: цвет всей реакционной смеси будет чисто-синий, затем он резко изменится на чисто-красный, потом опять на синий и т. д.

 

Как отмечает Пригожин, «столь высокая упорядоченность, основанная на согласованном поведении миллиардов молекул, кажется неправдоподобной, и если бы химические часы нельзя было наблюдать «во плоти», вряд ли кто-нибудь поверил бы, что такой процесс возможен». (По поводу последнего следует заметить, что первооткрывателю этого типа реакций П.Б. Белоусову пришлось на протяжении многих лет доказывать, что демонстрируемые им — причем именно «во плоти»! - химические часы не являются просто фокусом.) Помимо химических часов, в неравновесных химических системах могут наблюдаться и иные формы самоорганизации: устойчивая пространственная дифференциация (в нашем примере это означало бы, что правая половина сосуда окрасится в красный цвет, а левая — в синий), или макроскопические волны химической активности (красные и синие узоры, пробегающие по фиолетовому фону).

 

Однако для того, чтобы в некой системе начались процессы самоорганизации, она должна быть как минимум выведена из стабильного, равновесного состояния. В ячейках Бенара неустойчивость имеет простое механическое происхождение. Нижний слой жидкости в результате нагрева становится все менее плотным, и центр тяжести смещается все дальше наверх; по достижении же критической точки система «опрокидывается» и возникает конвекция. В химических системах ситуация сложнее. Здесь стационарное состояние системы представляет собой ту стадию ее развития, когда прямая и обратная химические реакции взаимно уравновешиваются, и изменения концентрации реагентов прекращаются.

 

Вывести систему из этого состояния очень трудно, а в большинстве случаев просто невозможно; не зря реакции типа «химических часов» были открыты лишь недавно, в 50-е годы (хотя их существование было теоретически предсказано математиком Р. Вольтерра еще в 1910 г.). Для того чтобы устойчивость стационарного состояния оказалась нарушенной, есть одно необходимое (но не достаточное) условие: в цепи химических реакций, происходящих в системе, должны присутствовать автокаталитические циклы, т. е. такие стадии, в которых продукт реакции катализирует синтез самого себя. А ведь именно автокаталитические процессы, как мы помним по главе 4, составляют основу такого процесса, как жизнь.

 

Итак, жизнь можно рассматривать как частный случай в ряду процессов химической самоорганизации в неравновесных условиях, происходящих на основе автокатализа.

 

 

 Смотрите также: